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PREFACE

This work is part of an ongoing investigation of the b,' avior of pressurized structural
elements under load with the ultimate objective of makino )ossib!e the use of such elements
in the support structure of Army tents. The work wds funded under the in-House
Laboratory Independent Research program as a work unit entitled, "'Study of the Stability
of Pressure Stabilized Arches and their Structural Assemblies." In the reference citations
the organizations "'US Army Natick Laboratories" and "US Army Natick Development
Center" refer to the organization now called the "US Army Niti,;k Research and
Development Command."
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PRESSURE STABILIZED BEAM FINITE ELEMENT

INTRODUCTION

A systems analysis of Army needs for shelters in the 1985 time frame revealed that
the requirements for lightweight tentage of low packaged bulk with minimum setup and
disassembly time might be most effectively achieved by a tent with a frame of highly
pressurized (compared with present air-supported tents) structural elements supporting a
lightweight fabric barrier,, as illustrated in Figure 1. Since the structural elements are
pressure stabilized, they can be fabricated from lightweight, flexible materials such as cloth,
thus reducing the weight and bulk of the tvansport configuration.. The use of bladders
or coated fabric for these elements should provide sufficient air retention capability to
eliminate the need for the dedicated air supply used with current air-supported tents.

To successfully develop this concept, a structural design capability was needed. To
meet this need an investigation of the structural behavior of pressure-stabilized beams and
arches was carried out and reported in references 1, 2, and 3. These references give
the development of theories with experimental confirmation to predict the structural
behavior of pressure stabilized beams and arches as a function of geometry, pressure level
and material properties. The theories give adequate predictions of both the deformation
and the load-carrying capability. These theories thus serve to characterize the behavior
of the structural elements and can be used as a guide to design.

Sinrce these structural elements are to be used in structural frames for tents, a more
complete design capability is needed; that is, the capability to predict the deformation
and load-carrying capability of frame assemblies made of pressure-stabilized elements and
loaded through a fabric barrier, Thus, a structural analysis method capable of treating
the interaction of assemblages of frame elements and the interaction of this frame with
the fabric barrier is needed. The finite element procedure is well suited to su',h calculations,
arid a computer program using that procedure for the analysis of conventional frame tents
was available.. This program, which is described in references 4 and 5, includes a

1. Earl C. Steeves; A Linear Analysis of the Deformation of Pressure Stabilized Beams; US
Army Natick Laboratories; Technical Repor /5-47-AMEL, 1975 (AD A006493).

2. Earl C. Steeves; Behavior of Pressure Stabilizeo Beams Under Load; US Army Natick
Deveibpment Center; Technical Report 75-82-AMEL; 1975 (AD A010702).

3. Earl C.. Steeves; The Structural behavior of Pressure Staoilized Arches; US Army
Research & Development Comr-End; Natick/TR-78/018; 1978.,

4. Paul J. Remington, John C., O'Ca;lahan and Richard Madden, Analysis of Stresses
and Deflections in Frdme Supported Tents; US Ar.my Natick Laboratories; Tecnnicai
Report 75-31;, 1974 (AD A002072).

5. Pzul J Remington, John C. O'Callahan and Richard Madden;' Finite Element Analysis
of Scale-Model Frame-Supported Tents; US Army Natick Research & Development
Command; Technical Report 76-21-AMEL, 1975.
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conventional beam element and a nonlinear membrane element for modeling the fabric

barrier. Since a pressure stabilized beam element was not included, it was decided to

develop such an element and adapt it to this existing computer program. The purpose

here is to report this work. This will include the development of the finite element,
its adaptation to the computer code and some check cases.

DEVELOPMENT OF FINITE ELEMENT

We proceed here with the derivation of the finite element with the int-nded result

a 12 X 12 stiffness matrix associated with generalized coordinate set comprised of the
three deflections and three rotations of each of the beam end points. The basis for this
derivation is the energy principle derived in reference 1. This energy principle which
includes bending in one plane and axial deformation is augmented to include bending
in two planes, axial deformation, and torsion. The displacement fields are represented
by poi;,,omials in the coordinate specifying position along the beam.

Because of the number and order of polynomials used, the number of generalized
coordinates exceeds 12, so a condensation is carried out.

In carrying out this derivation we use the coordinate system and sign convention
given in Figure 2. Shown are the sign conventions associated with the basic theory and
that associated with the finite element. The potential energy expression to be used is
that given in reference 1 and augmented as indicated above and is expressed in dimensional
form as:

f L ( du dQ, dc' dO
S1/2 ~E(dx + D(d-x + D(-.-) 2  + G( ax

dv dW+ C ( -- - _ 0•2 + C (.---- + p)-2  (1)

d W )•dv
+ P( F + P(d---}x- ý d xTdx dx+ PIdWxx + p(2'Žd

This expression is based on the assumptions of uniaxial strain and linear expression for
the shear strain in terms of the displacements. Since we seek a finite element with which
forces will be applied at the nodes, the distributed forces are not included in (1). The
potential energy expression is a quadratic in the displacements and can be written in matrix
form as

7
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du do dW dO d4f dv l' du

-dx dx - dx d Ex
D do

dx

C+P C dW
dx

L•-C C '
G dO Jx (2)

D dq'

SC+P -C dv

-C C '

where
E = 27aCl D = r, a'C,

C = 7raC 3 3  G = 7a 3 c' 3

P = 7ra 2P/2

In these definitions C, 1 , C3 3,, and p are respectively the elastic modulus, the shear modulus,
and the pressure. It can easily be seen from this espression that the axial, torsional,
and two bending energies are uncoupled and thus can be treated independently
informulating the finite element stiffness matrix.

du•
The energy resulting from axial deformation is given by th2 expression E(Lx)', which

is the classical expession. With the use of a linear representation for the axial displacement
field in terms of the end point axial displacements, U, and U2 , the following energy
expression is obtained upon integration:

LU, 02 ElL -E/L I U

_EL E/L Uj (3)

This is the classical stiffness matrix for linear axial behavior.

dO
Similarly, the torsional energy is givei by G(uxx) 2 and a representation of 0 lirear

in the x coU,,:,,ate in terms of the end point rotatior 0, and 02, yields for the energy

9



LUUo G/L G'L U

--GiL GiL U, (4)

Examination of (2) reveals tnat the two bending problems differ only in the algebraic
signs of the off diagonal elements. This being so, we can derive the stiffness matrix
associated with one of the bending problems and deduce the other form it We will
treat the problem described by W and o The formulation of the bending stiffness matrix
is not as direct or simple as the above problems or the classical bending problem This
results from the use of two independent parameters, W and p, to descriDe the bending
problem. The use of four generalized coordinates is generally sufficient to approximately
describe the beam bending problem and is though to be adequate here also. However,
dividing these four roordinates between the two independent variables, W and .1, only
allows for the use of linear aporcxima t ion of these variable wthin the context of
polynomial approximation. That is not believed to be an adequate approximation,, since
for W it only allows description of rigid body displacements. It was, therefore, decided
to use two third order polynomials, one to represen, W and the other to represent 9
This gives a stiffness matrix in terms of eight generalized coordinates, so a condensation
is performed to reduce the numbs- Lo four. The bending energy is

d d- 9 D 0 01 -

ld~x dx dx~

i 0 Q+P C --dW dx (5)./ dx

0 C C 9 1

and the polynomia! approximations are

do- o o0 hi 0 -h; 0 h', 0 h W,
i dx 1
dW...
d- h', 0 -hi 0 h3 0 h4" 0
dx X

9 0 h 0 h, 0 h• 0 h, W-

W,
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In equation (6)

h, = 1 - 3x2/L 2 + 2x 3 /L 3  hi = 6x2 /L' - 6x/L 2

h, = 3x2/L 2 -- 2x 3 /L' h'3 = 1 - 4x/L + 3x 2 /L2

h3 = x - 2x 2/L + x3 /L2 h4 = 3x 2 /L 2 - 2x/L

h4 = xV/L 2 - x2 /L

The elements of the vector of order eight in equation (6) are the transverse deflection
and cross-se.tion rotation and their derivations evaluated at x = 0 and x = L. The
subscript 1 lenotes evaluation at x = 0, and suoscript 2 denotes evaluation at x L,
The prime denotes the derivative of the variable. Substitution of (6) into (5) and
integra t on yields the following energy expression:

'At. At2j K,I K,1 2 ,

Y/2 (8) SK12 K2 2 A 2

where

W, W',

-.1 =•2 =(9)

The elements of the matrices KE I, K1 2 and K, 2 are given in Appendix A. We have
an eighth-order stiffness matrix which we would like to reduce to fourth order to make
it compatible with other finite elements for beam bending but particularly for compatibility
with the finite element described in references 4 and 5. To accomplish this the set of
generalized coordinates contained in A1 are chosen to be the set to be used and those
in •, the set to be removed. It is also assumed that the applied forces do work only
through the generalized coordinates A, so that the potential energy including the external
forces can be written

.1 A2] K, I K,12 JA][ 2i A Q
1/2 t7't A

1/ 1(2 K2 2 1:A2J t o (10)

L J1



In this situation the following transfcrmatijon of coordinr'*s can be used to carry out

the desired reduction or condensatior,

•= -K t

A, L-K,2 K,21 (11)

with I denoting the identity matrix. SubstitJp-,r of (11) intu (16) gives for the energy

expression

t t
A/2 ,SA, - A, 0 (12)

Where S is the desired 4 x 4 stiffness matrix expressed in terms of the original suDmatrices
as

-i t
S = KI - K, 2 K, 2 K1 2  (13)

This completes the development of the stiffness matrices for axial, tor.•ional, and bending

deformation and the complete 12 x 12 stiffness matrix associated with the end point
displacements and rotations can be assembled. In doing so, attention is paid to the order
of the generalized coordinates or end point displacements used in the NON FESA (Nonlinear
Finite Element Structural Analysis) program in which this finite element will be used..
The desired stiffness matrix appears as follows in the expression for the potential energy:

U1 V1 W) U0 0 1 ýj U2 V2 W2 0, 0,2 ý- E/L -E/L U1
- ' S S S2 S13 S 4,VY

S S i -S1 2  Si3 -S14 W,

G/L -G/L 01
-S12 S22 -S23 S24 91

S12 S22 S23 S2 4 O (14)
"-E/L EiL U,

S13 S23 S33 S31 V 2
S• 3 -S23 S33 -S34 W,-G/L G/L l02

"-S14 S24 -S34 S44 '2'

S14  S '24 S -4 S 44

12



I Iw e' hilwIii, %1l ili (14) are chlement% of the mdtrix S given in (,13) Itn assembling

thl% Ititlllix, ".count has been ti,ike.n of the algebraic sign difference of the off diagonal
elehiits in the bending problem associated with V and i that was discussed previously
In Co'nn'Ctioll willth xpression (2) The matrix in (14) is the desired stiffness matrix,
'.inil lhiivilil it w(e can p'io((,(-(d willt its adaptliion to the NONFESA

Ill all yll)(i o(it thl, adaplatlolln, two options were open, the. first being to creatk
all (eilil ,ly iv w hleiient Ito be included dlong with the beami, memnbrane and truss elements
ill,,ady ill Ilh(' 1)1otoIllll,, 1iid the second being to rmodify the present beam element by
iakilni tll,' ple'ssurc stabilized beam element an option on the conventional beam element.

i3c."iuse of the great similarity of this beam element to the conventional one, this second
optim was chosen. To accoiplish this adaptation changes were required in both the

piogwain and the input. Program changes were required in the computation of the stiffness
matrix and in the computation of the stresses for output. The beam stiffness matrix
is computed in the subroutine named NEWBM, and in tthis subroutine an option was added

for calculation of the stiffness matrix according to (14). 1 hib option is controlled by
the parameter JPRES. For the calculation of the stiffness matrix according to (14) two
additional subroutines are needed, ELB to calculate the stiffness matrix S and GJSOL
to solve a system of equations by Gauss-Jordan reduction. In ELB the order eight stiffness
matrix of (8) is calculated according to the formulas for the elements given in the appendix.
The corlensation of the matrix is carried out using subroutine GJSOL, and the order

four matrix is returned to subroutine NEWBM for assembly into the 12 x 12 stiffness
matrix along with the other elements which are calculated directly into the matrix. The
reader may question the need for inclusion of the subroutine GJSOL for Gauss-Jordan

reduction when one is already present in NONFESA for solution of the large system of
equations generated by the program. The subroutine already included is especially designed

for large systems of equations stored on tape in block format so its use on a fourth
order system seemed inefficient and overly complex. Thus a very simple 25-line subroutine
was added to carry out the condensation. The other programming changes are in subroutine

BEAM where the stresses are computed for output from the nodal forces. Because the
pressure-stabilized beam is a circular cylindrical membrane, membrane-type stresses are

computed as follows:

The uniform stress resulting from axial deformation is computed by dividing

the axial nodal forces by the circumference of the cross-section.

The maximum and minimum stresses rr-ulting from bending deformation are
computed for each of the two planes of bending. The magnitudes of these
parameters are the quantities and their negatives obtained by dividing the nodal
moment for each of the planes of bending by the area inclosed by the

cross-section.

The average stresses from shear deformation are computed by dividing nodal
shear force associated with each of the two planes of bending by the

circumference of the cross-section.

13



These stiess calculat.'ns are carried out for both ends of the beam.

The only input that changes is that associated with the beam element, with these
changes being on the material property card, the element property card and the beam
(ata iards of reference 6. For the pressure stab, zed beam the needed input in addition
to the contr')l parameter is the beam length, the clastic modulus, Poisson's Ratio, the
cross-section radius, and the inflation pressure. The beam length is computed from the
beam end point nodal coordinates and this does not constitute a change. The elastic
modulus and Poisson's Ratio are entered with the material property card, with the elastic
modulus being the first entry following the identification number and Poisson's Ratio
the second. The elastic modulus required is of the membrane type having the units of
force per unit length. If Poisson's Ration is known, it can be entered, but typically
the parameter that is known is the membrane shear modulus. In the program the shear
modulus is computed from the elastic modulus and Poisson's Ratio according to the relation

C13 = C, 1/2(1 + p) (15)

Thus, when the shear modulus and the elastic modu!us are known, the Polsson's Ratio
to be entered as the second entry on the material property card should be calculated
by the expression by solving (15i forju in terns of C• I and C3 3 . The element property
card contains an identification number followed by eight numerical parameters. For the
pressure-stabilized beam elements, the first two of the numerical parameters are the
cross-section radius and the inflation pressure, in that order. The fifth of these parameters
should be entered as a negative number as this is used to control the option on the
computation of the stresses from the nodal forces. The remaining five parcmeters are
dummies for the pressure-stabilized Lam eler.ment, and nonvan:shing entries should be made
for them. Control of the pressure-stabilized beam option is accomplished by the parameter
JPRES on the beam data card (there is one of these cards for every beam) If a given
beam is to use the pressure-stabilized beam option the PJRES must be entered as unity
in column 68 of the beam data card, otherwise it is to be left blank or entered as zero.
If the pressure-stabilized beam element is exercised then the material property and element
property numbers entered on the beam data card must correspond to the identification
numbers corresponding to material and element property sets for pressure-stabilized beams
as described above.

6 Johr, C. O'Callahan NONFESA - Nonlinear Finite Element Structural Analysis Code
for the Analysis of Stresses and Deflections in Frame Supported Tents, Bolt Beranek
and Newman,, Ir,c., Report No. 2803, 1975.
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CHECK CASES

To esiablish the validity of the pressure stabilized beam finite element two check
't-,ee, are piesntedl hel A 'lraicjht beam loaded a fts -nidpoint in two perpendicular

plalliev aInd a (,i c1il,1i cih loaded !n :Is plane are thf, check caseb. The finite element

'ilc-ulaitions m11e ciompared with the exact solutions of the theory given in references

4 and [

Tit' siimplest structurt. that can be modeled using the pressure stabilized beam finite

,lenlint is a straight beam, as shown in Figure 3. We have taken a beam i20 cm long
having a circular cross section of 3 cm radius and divided it into six elements of equal
lenglth. The elenent numbers "i Figure 3 are inclosed in the square symbols and the

nodes are numbered one through 8 and denoted by the solid circular symbols. Node
eight is a dummy node require to establish the element coordinate system. The global

coordinate system is shown in Figure 3, and for this case local coordinate system for

each of the elements coincides with the global system. The ends of the beam are simply
supported and restrained against rotation about the global x-axis. Concentrated loads

are applied at the center of the beam, node number 4, in the Y and Z directions. The
beam material properties and the inflation pressure are also tabulated in Figure 3.

It is desirable to be able to model curved members with this finite element, so to

establidi its validity for this class of structures, a circular arch was modeled as shown
in Figure 4. This arch has the form of a semicircle with a radius of 120 cm and the
circular cross section has a radius of 4 cm. This arch is modeled with eighteen elements
of equal length. The element members are inclused in square symbols and the node points

are denoted by the solid circular symbols. Node number twenty is a dummy used to
establish the local element coordinate system. The global coordinate system is shown
in Figure 4 and the arch material properties and inflation pressure are tabulated there
also The ends of the arch are simply supported, and displacements in thd X direction

for all nodes are suppressed. A concentrated load of unit magnitude is applied at node
number ten in the negative Z direction.

For both the beam and the arch we present the input data and the output results
from the NONFESA program and a comparison of the finite element results with the
results from the exact solutions of the theory. The computer input and results associated
with the NONFESA program are given in Appendices B and C for the beam and arch
respectively and the comparison of the finite element results with those from the exact
solution are given in Table 1 and 2. The input data in Appendices B and C are presented
as illustrative examples and no comments are needed. The output from the NONFESA
program also appearing in Appendices B and C can be divided into two parts, the first
being a printout of the input data and some computed setup data such as the

correspondence between degrees of freedom and equation numbers. It should be noted
that the cross-section radius and the inflation pressure are printed under the Beam
Geometric Properties heading as the Area X and Area Y, respectively. Also note that
the parameter Inertia Y under this same heading is a negative number. As discussed above

15
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TABLE 2

Comparison of Finite Element Results with Those
from the Exact Solution for the Arch Check Case

Normal Displacement Axial Displacement Rotation
cm cm

Angular
Position Node Finite Finite Finite
Degrees No. Element Exact Element Exact Element Exact

-4 -4-90 1 0. 0. 0. 0. 1.4X 10 14X10-- 3 -3 -3

--80 2 - 3.58XI0 - 3.58X10 -0.52XI0 -0.53X10 1.3 1 2
-70 3 - 5.82 - 5.81 -1.57 -1.59 0.7 0.7
-60 4 -- 6.39 - 6.35 --2.86 -2.91 006 0.05
-50 5 - 5.16 - 5.11 -4.11 -4.16 --0,6 -0.6
-40 6 - 2.19 - 2.12 -4.98 -5.03 -- 1.3 -- 1.3
--30 7 2.28 2.39 -5.19 -5.24 -1.8 -1.8
--20 8 7.89 8.0 -4.49 -4.54 -- 2.0 -2.0
-10 9 13.5 14.0 -2.17 -2.78 -1.6 -1.6

0 10 19.2 19.3 0. 0. 0. 0.

Axial Force, N Moment N-cm Stress N/cm
Angular

Position Node Finite Finite Finite
Degrees No. Element Exact Element Exact Element Exact

-90 1 - 0.525 - 0.500 0.0 00 -0.020 -0.019
-80 2 - 0.543 - 0.545 0.895 0.868 -0 039 -0.039
-70 3 - 0.572 - 0.573 1.31 1.27 -0.049 -0.049
-60 4 - 0.583 - 0.585 1.47 1.43 -0.052 -0.052
-50 5 - 0,576 - 0.578 1.46 1.41 -0.052 -0051
-40 6 - 0.552 - 0.554 1.29 1.24 -0.047 -0.047
-30 7 - 0.511 - 0.513 0.88 0.836 -0.037 -0.037
-20 8 - 0.455 - 0.456 0.046 0.007 -0.019 -0.018
-10 9 - 0.385 - 0.386 -1.66 -1.69 -0.018 0.019

0 10 - 0.347 - 0.304 -5.26 -5.29 -0.091 0.095
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Winder the description of input, this is used for testing whether the beam element is a
piessure stabilized elemernt for computation of stresses. The second part of the output
contains the computed results for the beam stresses, beam forces and moments, nodal
displacements and rotations, and the nodal displacements. As is indicated on the printout,
for pressuie stiili/ed beam elements the stress should he interpreted as a membrane stress
with units of force per unit length.

The comparison of the finite element results with those given by the exact solution
of the beam theory of reference 1 is presented in Table 1 The simple six-element finite
element model is in agreemert with the exact sclution to all decimal places shown for

,:I three parameters, displacement, rotation,, and bending stress. The limit on the number
of places given in "ble 1 is the output of the NONFESA program. ,he maximum possible
pcrcentage difference between the finite element results and tho exact solution is
then 2 4%. This is good agreement and establishes the validity of the eiement for straight
beams

The comparison of the finite element results with those given by the exact solution
of the arch theory of reference 3 is presented in Table 2. Results are presented for
half the arch since the results for the other half can be inferred from those presented
by the symmetry of the structure and the loading. The finite element results generally
follow the results from the exact solution with differences of less than 5% and in most
cases considerably less than 5%. There are,, however,, three cases where the difference
is greater than 5% Two of these, the axial displacement at node 9 and the axial force
at node 10, do not appear to have an easy explanation but the third one, the moment
at node 8, appears to be due to the closeness of the node to the point where the moment
changes sign In this case,, the exact solution is very close to the value zero, and thus
any error in the finite element solution is magnified. In general, this comparison is good
and establishes the validity of the finite element for curýed structures.

CONCLUDING REMARKS

The development of a finite element for pressure-stabilized beams is described along
with its adaptation to the Nonlinear Finite Element Structural Analysis program. This
provides a means for carrying out design analysis of pressure-stabilized frame-supported
tents under rather general loading. The validity of the finite element and the correctness
of its adaptation to the structural analysis program is established by the comparison of
finte element results with exact solution for a straight beam and a circular arch.,
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APPENDIX A

ELEMENTS OF THE 8 x 8 BENDING STIFFNESS MATRIX

The elements of the 8 x 8 bending stiffness matrix are given here in terms of the
4 x 4 submatrices K I , K1 2, and K, - In presenting these elements, use is made ur
the symmetry of the matrices wherever oossible

Submatrix K,

Row index Column index Element

1 1 6(P + C)/5L

2 1 C/2

3 1 -6(P + C)/5L

4 1 C/2

2 2 6D/5L + 13CL/35

3 2 -C/2

4 2 -6D/5L + 9CL/70

3 3 6(P + C)/5L

4 3 -C/2

4 4 6D/5L + 13CL/35

Subrnatrix K, 2

Row index Column index Element

1 1 (P + C)/10

2 1 -CL/10

3 1 -(P + C)/10

4 1 CL/10

1 2 CL/10

24
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Row index Column index Element

2 2 D/10 + 11CLC/210

3 2 --CL/1O

4 2 -D/1O + 13CL 2 /420

1 3 (P + C)/1O

2 3 CL/10

3 3 -(P + C)OO

4 3 -CL/10

1 4 -CL/10

2 4 D/10 - 13CL 2 /420

3 4 CL/10

4 4 -D/10 - 11CL 2/210

Submatrix K.,

Row index Column index Element

1 1 2(P + C)L/15

0

3 1 -(P + C)L/30

4 1 --C L /60

2 2 2DL/15 + CLV/105

3 2 CL 2 /6(

4 2 -DL/21 - CL 3/140

3 3 2(P + C)L/15

3 4 0

4 4 2DL/15 + CL 3/105
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SYMBOLS

Beam cross-section

C shear stiffness

C, e&astic modulus

shear modulus

D bending stiffness

E axial stiffiess

G torsional stiffness

h. shape functions used in displacement approximations

ii

L beam length

P pressure parameter

p pressure

0 vector of generalized forces

S 4 x 4 bending stiffness matrix

S. elements of the matrix S
ii

u axial displacement

U1 ,U2  nodal axial displacements

v,w bending displacements

V1 ,V, ,W1 ,W2  nodal bending displacements

x axial coordinate

11 'A2  vector defined by equation (9)
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0,0, •cross-section rotations

01 ,0• nodal torsional rotations

1, ,2,yI l 2  nodal bending rotations

denotes differentiation with respect to x
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